По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курган (3522)50-90-47 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Ноябрьск(3496)41-32-12

Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саранск (8342)22-96-24 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35

Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Улан-Удэ (3012)59-97-51 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Россия +7(495)268-04-70

Казахстан +7(7172)727-132

Киргизия +996(312)96-26-47

сайт: www.honeywell.nt-rt.ru || эл. почта: hwn@nt-rt.ru

ПРОГРАММЫ

Технические характеристики на FOUNDATION Fieldbus

Введение

Общие сведения

В настоящем руководстве содержатся указания, которые помогут пользователю в установке, эксплуатации и обслуживании универсального трансмиттера XNX с опцией обмена данными Foundation Fieldbus. Предполагается, что пользователь хорошо знаком с принципами работы протокола Foundation Fieldbus, универсальных трансмиттеров XNX и используемой системы главного контроллера.¹ По вопросам конфигурации той или иной системы главного контроля следует обращаться непосредственно к ее производителю. Перед тем как приступить к изучению настоящего руководства, пользователю следует ознакомиться с технической инструкцией для универсального трансмиттера XNX.

Описание продукта

Для универсальных трансмиттеров XNX имеется три опции обмена данными, одной из которых является Foundation Fieldbus. Опция Foundation Fieldbus – полностью цифровой коммуникационный протокол, отвечающий требованиям стандартов организации Fieldbus Foundation. Он обеспечивает сопряжение узла с системами главного контроля от производителей, работающих в соответствии с действующими стандартами Foundation Fieldbus. Поскольку в такой системе управления реализована сеть обмена данными через коммуникационную шину в рамках всего предприятия, проводные подключения к сети выполняются в любой точке по месту ведения технологического процесса.

Foundation Fieldbus

Foundation Fieldbus используется для управления технологическими процессами и контроля за ними. Управление технологическим процессом подразумевает контроль и регулирование непрерывных процессов, например поддержание расхода жидкостей, температуры или уровней в резервуарах. Такие технологические процессы обычно встречаются на нефтеперерабатывающих и химических заводах, а также на целлюлозно-бумажных комбинатах.

Foundation Fieldbus может использоваться для ведения контроля на больших расстояниях с применением распределенного управления, т. е. управление осуществляется самими устройствами, а не одним компьютером, на который возложен такой контроль. Устройства ввода, вывода и управления технологическим процессом, которые имеются в конфигурации сети Fieldbus могут работать независимо от компьютерной системы.

Foundation Fieldbus – полностью цифровая, двусторонняя, многоканальная лгоритмов

в приборах для обнаружения газов. Foundation Fieldbus поддерживает цифровое шифрование данных и различных типов сообщений. В отличие от многих традиционных систем, требующих использования набора проводов для каждого устройства, несколько аппаратных единиц Foundation Fieldbus могут быть подключены при помощи лишь одного комплекта проводки. Foundation Fieldbus помогает преодолеть некоторые недостатки фирменных сетей, обеспечивая сетевую унификацию для подключения систем и устройств.

¹ Иллюстрации в настоящем руководстве сделаны с использованием главного контроллера Honeywell Experion. Имеются также другие главные контроллеры.

Словарь терминов

Термин	Описание
Ударные испытания	Операция, при которой проверяется работоспособность датчика подачей газа в концентрации, превышающей уставку сигнализации
DD	Описания устройств
ECC	Электрохимический элемент
Технические единицы	%LEL: процент от нижнего предела взрываемости%Vol: процент от объема PPM: частей на миллион мг/м3: миллиграмм на кубический метр
EPKS	Технологическая система накопления, хранения и обработки знаний Experion
Ферритовая шайба	Деталь для подавления электромагнитных помех в радиочастотном диапазоне
Field bus	Протокол обмена данными между полевыми устройствами и системой управления
Главный контроллер	Узел контроля всех полевых устройств в сети
ИК	Инфракрасный
мА	Миллиампер, 1/1000 ампера
мВ	Милливольт, 1/1000 вольта
Уплотнительное кольцо	Гибкая прокладка в форме кольца, сжатием которой создается уплотнение между двумя жесткими деталями
Searchline Excel	Детектор газа с открытым оптическим трактом для определения присутствия газа между источниками и детекторами на определенном участке тракта
Переключатель режима моделирования	Элемент управления, переводящий устройство в автономный режим для тестирования
Softwlock	Выбранное программное средство, не позволяющее пользователю изменять параметры устройства Fieldbus
Калибровка по проверочной смеси	Операция, которая используется для указания величины интервалов на кривой изменения содержания газа в трансмиттере/датчике
Плетеный стальной экран	Жгут проводов с оплеткой, предназначающейся для подавления радиочастотных помех и для защиты от перетирания
Контактная колодка	Электрические разъемы, где в одном месте собраны проводные цепи устройства
Калибровка нуля	Операция, которая используется для указания нулевого уровня на кривой изменения содержания газа в трансмиттере/датчике

Монтаж проводки

Система Fieldbus Foundation служит для замены аналоговых токовых контуров 4–20 мА, обычных для других промышленных сетей с одной двухпроводной линией от пункта управления к полевым объектам. Магистральная шина обеспечивает параллельное подключение всех устройств. Данные в системе передаются в цифровом виде. Трансмиттер для обнаружения газов XNX поддерживает большинство цифровых протоколов обмена данными (HART, MODBUS, Foundation Fieldbus и т. д.) и использование цифрового выхода (релейного). В основе всего этого лежит использование основного аварийного канала, аналогового выхода (4–20 мА).

Перед установкой ознакомьтесь с инструкциями по проводным подключениям Fieldbus Foundation (файл *wiringinstallationguide.pdf* по адресу Наиболее часто встречающиеся варианты монтажной электрической схемы показаны на рисунках 1 и 2. См. инструкции по проводным подключениям, чтобы выбрать другую топологию.

рис. 1: Сеть Simple Fieldbus с одним трансмиттером XNX

Монтаж всего оборудования должен производится в соответствии с местными нормативами и правилами, которые приняты на объекте.

² Fieldbus Foundation > Ресурсы конечных пользователей > Технические справочные материалы > Руководство по установке и монтажу проводки; по состоянию на 10 сентября 2010 г.

рис. 2: Сеть Fieldbus с трансмиттером XNX и дополнительными устройствами

Для подсоединения трансмиттера XNX должен использоваться экранированный кабель. Присоединительную точку экрана кабеля Foundation Fieldbus следует устраивать в месте входа в трансмиттер. Это достигается использованием подходящего кабельного уплотнения, позволяющего сделать подсоединение экрана на самом уплотнении. (**Не допускается** делать вывод экрана коммуникационного кабеля Foundation Fieldbus на внутренний наконечник заземляющего проводника трансмиттера.) Подключения Foundation Fieldbus в трансмиттере выполняются через съемную контактную колодку на плате опции Foundation Fieldbus, как показано на рис. 3. Для включения/выключения режима моделирования в составе платы имеется соответствующий переключатель

(SW5). Кабель Foundation Fieldbus H1 подключается к клеммам 3-1 и 3-3. Клемма 3-1 имеет внутреннее соединение с клеммой 3-2. Аналогично клемма 3-3 имеет внутреннее соединение с клеммой 3-4. Клеммы 3-5 и 3-6 используются для подключения заземляющего кабеля Foundation Fieldbus (см. рис. 3).

рис. 3: Плата опции XNX Foundation Fieldbus и контактная колодка

Ввод в эксплуатацию

Перед вводом в эксплуатацию опции Foundation Fieldbus необходимо установить и сконфигурировать трансмиттер XNX. До завершения выполнения настроек, калибровки и перезагрузки, на последних этапах загрузки системы могут появляться предупреждающие сообщения и сообщения об ошибках.

Настройка

В этом разделе подробно рассмотрены вопросы запуска и работы коммуникационной части трансмиттера. Здесь также содержатся сведения обо всех активных функциональных блоках.

Описание устройства

Для этого устройства был создан специальный файл DD «Дескриптор устройства» с регистрацией в Fieldbus Foundation. Файл DD можно найти на компакт-диске с программным продуктом. Его необходимо загрузить в систему главного контроля, прежде чем приступить к установке и настройке устройства. При необходимости файл DD можно также получить на сайте Fieldbus Foundation по адресу

- 1. Перейдите на страницу End User Resources (ресурсы для конечных пользователей).
- 2. Щелкните Registered Products (зарегистрированные продукты).
- 3. В выпадающем меню Manufacturers (производители) выберите Honeywell Field Solutions.
- 4. В списке категорий выберите Analytical (анализаторы).
- 5. Нажмите Search (поиск).
- 6. Щелкните XNX Universal Transmitter.
- 7. Нажмите Download DD/CFF file (загрузить файл DD/CFF), чтобы начать загрузку.

После установки главная система сможет нормально обмениваться данными с универсальным трансмиттером XNX. За дополнительной информацией, касающейся работы и установки файлов с дескрипторами устройств, обращайтесь непосредственно к производителю главной контрольной системы.

³ по состоянию на 3 февраля 2011 г.

Описания блоков

Все устройства Fieldbus имеют «блочную» рабочую конфигурацию. Fieldbus Foundation определила набор стандартов, которому должен отвечать каждый узел. В результате сведения о блоке всегда согласованы по разным продуктам

и производителям. Специальный уровень, «особые параметры производителя», действует в полном соответствии со своим названием. Здесь Fieldbus Foundation дает возможность производителям добавлять функции, которые присущи только их устройствам. Дополнительные сведения об определениях и описаниях можно найти по адресу

Функциональный блок (аналоговый вход)

Функциональный блок состоит из последовательности параметров, которые лежат в основе работы системы и управления ей. Fieldbus Foundation определила стандартные наборы функциональных блоков. Эти блоки осуществляют обмен сообщениями по сети.

Основной задачей блока аналоговых входов (AI) является обработка входящих сигналов от чувствительного элемента (в этом случае для определения концентраций газа) и предоставление этих данных для использования в других функциональных блоках. Данные представлены в формате тех технических единиц, который был задан пользователем.

Блок ресурсов

В каждом устройстве имеется один блок ресурсов. Он используется для описания характеристик отдельного устройства. Здесь размещены такие параметры, как имя, производитель и серийный номер устройства. В этом блоке отсутствуют связываемые параметры.

Преобразовательный блок датчика

Преобразовательный блок датчика содержит данные о конфигурации, относящиеся к конкретному отдельному устройству. В этом блоке содержатся такие данные, как тип и дата калибровки датчика.

Общие операции блоков

Для каждого блока в трансмиттере имеется общий с другими блоками набор режимов программирования. Установив рабочий режим, пользователь сможет принудительно указать выход трансмиттера на сетевую шину.

Описание	Функция
AUTO	Нормальный рабочий режим. Функционируют все входы данных, вычисления и выходы данных блока.
Бездействующий режим (OOS)	Перевод рабочего режима в OOS отключает выполнение блоком всех функций.

⁴ по состоянию на 10 сентября 2010 г. Техническое руководство XNX Foundation Fieldbus

Особые команды: блок ресурсов

В этом разделе рассмотрены общие команды, которые имеются в блоке ресурсов.

WRITE_LOCK

Параметр WRITE_LOCK используется для запрещения произвольных изменений параметров в устройстве. Когда он включен, единственной доступной командой остается WRITE-LOCK, что позволяет удалить этот параметр. После удаления запись в устройстве будет разрешена снова. После удаления WRITE_ALM генерирует сигнал тревоги, предупреждающий о внесении изменений. Приоритет этого сигнала тревоги соответствует параметру WRITE_PRI.

FEATURES_SEL

Команда FEATURES_SEL применяется для включения или выключения дополнительных функций, поддерживаемых устройством. В этом случае поддерживаются REPORTS, SOFTWLOCK и мультибитные сигналы.

Особые параметры: преобразовательный блок датчика

В этом разделе рассмотрены общие команды, которые имеются в преобразовательном блоке датчика.

- Информация
- Проверка
- Калибровка (нуль/проверочная смесь)
- Настройка

Этот блок не содержит параметров, позволяющих изменение технических единиц (такое изменение возможно через блок аналоговых входов). Единицы в преобразовательном блоке датчика автоматически следуют за значениями, которые программируются параметром XD_SCALE parameter.

Особые параметры: блок аналоговых входов

В блоке аналоговых входов доступны команды, описанные ниже.

L_TYPE

Данный параметр используется для определения отношения между измеренным технологическим значением (преобразовательного блока датчика) и выходной величиной блока аналоговых входов. XNX поддерживает все типы линеаризации. После установки значения DIRECT для этого параметра, данные преобразовательного блока будут проходить без изменений (например, выходное значение блока аналоговых входов и значение преобразовательного блока будут идентичны). Значения между преобразовательным блоком и блоком аналоговых входов будут сохранять линейность.

XD_SCALE и OUT_SCALE

Эти параметры используются для задания технических единиц и коэффициентов масштабирования, увязанных с теми данными, которые приходят в блок аналоговых входов и генерируются в нем. Каждый параметр может быть выставлен на 0 %, 100 % или задан связанными техническими единицами. Программирование этих параметров различается в зависимости от выбранного L_TYPE.

Поддерживаются технические единицы PPM, %LEL, LELm, mg/m^{3,} и %VOL⁵. Чтобы избежать ошибок конфигурации, выбирайте ТОЛЬКО те единицы, которые поддерживаются устройством. Технические единицы перезаписать нельзя.

L_TYPE = DIRECT

Если требуемое выходное значение блока аналоговых входов совпадает с измеренной переменной. Настройки имеют следующий вид:

XD_SCALE = то же, что и диапазон процесса;

OUT_SCALE = установить то же, что и XD_SCALE.

Пример

Строка описания процесса показывает 0–100 %LEL, вывести требуется %LEL.

XD_SCALE 0-100 % LEL OUT_SCALE 0-100 % LEL

Масштаб XD перезаписать нельзя.

Технологические сигналы тревоги

Данные OUT (выхода), которые выданы блоком аналоговых входов сравниваются со значениями, которые запрограммированы для сигналов тревоги. По достижении того или иного значения срабатывает соответствующий сигнал тревоги. Доступны следующие сигналы тревоги:

- HI_LIM = сигнал повышения уровня;
- HI_HI_LIM = сигнал опасного повышения уровня; LO_LIM
- = сигнал понижения уровня;
- LO_LO_LIM = сигнал опасного понижения уровня.

Сигналы HI_LIM, HI_HI_LIM, LOW_LIM, LOW_LOW_LIM используются блоков аналоговых входов в главной системе.

⁵ Эти технические единицы должны создаваться пользователем, если они отсутствуют в перечне главной контрольной системы.

Данные о состоянии системы: блок аналоговых входов

При нормальной работе с преобразовательного блока датчика на блок аналоговых входов для дальнейшей обработки поступают либо фактические, либо расчетные значения. Вместе с этими данными отправляются также сведения STATUS (о состоянии системы). Возможны следующие состояния:

STATUS = GOOD (ХОРОШО), отсутствуют проблемы с данными или аппаратными средствами;

STATUS = BAD (ПЛОХО), обнаружены проблемы либо с аппаратными средствами, либо с данными, отправленными с преобразовательным блоком датчика;

STATUS = UNCERTAIN (НЕ ОПРЕДЕЛЕНО),

поле STATUS используется блоком аналоговых входов в главной системе.

Режим моделирования: блок аналоговых входов

Во время проверки существует возможность принудительно вывести данные от блока аналоговых входов. Такая процедура может быть использована для тестирования управляющих функций или проверки работы устройства дальше по цепи, которое получило эти данные. Для вывода данных имеется два способа.

Ручной режим

В ручном режиме выходные данные от блока аналоговых входов принудительно выводятся на требуемое значение. Это не изменяет статус параметра STATUS. Для включения ручного режима установите TARGET MODE (заданный режим) блока аналоговых входов в положение MANUAL (ручной). Теперь OUT.VALUE можно отредактировать, чтобы отразить здесь требуемое выходное значение.

Режим моделирования

В режиме моделирования выходные данные от блока аналоговых входов принудительно выводятся на требуемое значение. Он также меняет на соответствующее значение параметр STATUS. Чтобы включить режим моделирования, следуйте указаниям ниже.

- 1. Передвиньте переключатель SIM на трансмиттере в положение ON (ВКЛ.). Переключатель SIM расположен позади трансмиттера над клеммой подключения Foundation Fieldbus. Теперь устройство работает в режиме моделирования.
- 2. Установите для TARGET MODE значение AUTO, чтобы изменить OUT.VALUE и OUT.STATUS.
- 3. Установите для параметра SIMULATE_ENABLE_DISABLE значение ACTIVE.
- 4. Введите требуемое значение в параметр SIMULATE_VALUE для принудительного вывода параметра OUT.VALUE, установив при этом для OUT. STATUS правильное значение.

Если во время выполнения этой процедуры возникли какие-либо ошибки, верните переключатель SIM в исходное положение. Это удалит все ошибочные условия, позволив устройству возобновить работу.

Эксплуатация

Интерфейс XNX Foundation Fieldbus обеспечивает удобство удаленного доступа ко всем локальным интерфейсным пользовательским функциям, включая вывод на дисплей состояния системы, проверку, калибровку и настройку конфигурации. Для взаимодействия с трансмиттером XNX необходим файл сдескрипторами устройства (DD). На следующих снимках, где в качестве главного контроллера используется система Experion, показаны некоторые функции интерфейса Foundation Fieldbus с трансмитером XNX.

рис. 4: Представление данных XNX со стороны Experion (изображение имитации)

Настройка

Все пользовательские настройки трансмиттера XNX могут быть выполнены либо в локальном пользовательском интерфейсе, либо через Foundation Fieldbus. Меню конфигурации упрощает настройку уровней сигналов тревоги, как показано на рис. 6. В конфигурации также можно задавать настройки для времени, единиц измерения и других параметров.

EYWELL:XNX_0101.AITB	Block, AITB - Parameters [Monitoring]	<u>? ×</u>
rocess Alarm Alarm2	aintenance Tune Other Identification	
Fault/Warn Number	NA	1
Reset Alarms and Faults	Select	
LAL Absolute	5	
UAL Range	25	
LAL Range	5	
Minimum Sensor Limit	25	
Maximum Sensor Limit	25	
Alarm 1 Threshold	22,5	
Alarm 2 Threshold	18.5	
Display Range	25	
Display Range Lower	0	
Alarm Configuration		
Alarm 1 on Descendi	ng Concentration	
Alarm 2 on Descendi	ng Concentration	
Alarm 1 Latching		
Alarm 2 Latching		
Reserved		
Faults Latching		
Config State	Accepted	
Update Alarm Ranges	Select	
Simulate Alarms Faults	Select	Į.

рис. 5: Окно конфигурации Foundation Fieldbus

Журнал событий

Трансмиттер XNX ведет журнал всех значительных событий, доступ к любому из них может быть осуществлен через интерфейс Foundation Fieldbus. Регистрируются все сигналы тревоги, предупреждающие сообщения и ошибки. Кроме того, определено свыше 60 типов информационных событий для учета важных операций, таких как перекалибровка или изменение настроек конфигурации. Каждому событию присваивается метка времени, в журнале хранится 1280 записей. На рис. 7 показан журнал событий в окне Experion.

EYWELL:XNX_0101.AITB Blo	ck, AITB - Parameters [Monitoring]	<u>? ×</u>
rocess Alarm Alarm2 Maint	enance Tune Other Identification	64
Path Length Hi Lim	0	1
Path Length	0	
Sensor Life	653	
Config Change State	Accepted	
Accept Excel Fault Parameters	Select	
: I Inhibit	2	
W Warning	3	
0 Overrange	21	
B Beam Blocked	ĩ	
L Low Signal	Ĵ.	
Filter by	All Events	
Goto	Select	
EVENT_HISTORY		
Time	01/01/70 00:00:00	
Туре	RESET	
Sub Type	0	
Parameter	0	
Index	0	
MaxIndex	647	
		×

рис. 6: Окно журнала событий Foundation Fieldbus

Проверка

Меню проверки предоставляет возможность выполнения часто встречающихся задач, таких как блокирование выхода, отработка аналогового выхода либо моделирование сигналов тревоги или ошибок. Рис. 8 с окном проверки Experion.

EYWELL:XNX_0101.AITB	Block, AITB - Parame	ters [Monitoring]	<u>? </u> ×
rocess Alarm Alarm2	faintenance Tune D	ther Identification	
Fault/Warn Number	NA		1
Reset Alarms and Faults	Select	-	
LAL Absolute	5		
UAL Range	25		
LAL Range	5		
Minimum Sensor Limit	25		
Maximum Sensor Limit	25		
Alarm 1 Threshold	22.5		
Alarm 2 Threshold	18.5		
Display Range	25		
Display Range Lower	0		
Alarm Configuration			
Alarm 1 on Descendi	ing Concentration		
🔽 Alarm 2 on Descendi	ing Concentration		
🦵 Alarm 1 Latching			
🔲 Alarm 2 Latching			
Reserved			
Reserved			
Faults Latching			
Config State	Accepted		
Update Alarm Ranges	Select	I	
Simulate Alarms Faults	Select	-	-

рис. 7: Окно проверки Foundation Fieldbus

Калибровка

В этом меню имеется возможность выполнять калибровку нуля или по проверочной смеси, а также проводить ударные испытания. Кроме того, при оснащении детектором газа Searchline EXCEL, меню калибровки показывает интенсивность оптического сигнала для механической юстировки. Порядок калибровки по газу показан на рис. 8, процедура детально описана ниже.

EYWELL:XNX_0101.AITB Bloc	ck, AITB - Parameters [Mor	nitoring]	<u>?</u> ×
rocess Alarm Alarm2 Mainte	enance Tune Other Iden	ntification	100
Soft Reset	Select	1	1
Raw Gas Concentration	20.82948		
Long Term Inhibit	Select	-	
Inhibit Status			
O Inhibit by Local User			
O Inhibit by HART User			
O Inhibit by FF User			
O Future Use			
O Long Term Inhibit			
O Future Use			
O Future Use			
O Future Use			
Target Conc	20.8		
Calibration Command	Select		
Input Range	Reserved		
Calibration Status	Calibration Menu State		
Bump Test	Select		184
Align Excel	Select	<u>-</u>	
Monitoring State	Normal Monitoring		
Analog Output (mA)	17.37598		
Calibrate analog current output	Select	-	
Adjust DAC Setting	Select		
Force Analog Current Output	Return to Normal Operation	-	-

рис. 8: Окно калибровки Foundation Fieldbus

Предостережение. Не отменяйте выбор пунктов меню в ходе выполнения калибровки.

Процедура калибровки по образцу

Порядок действий для этой операции различается в зависимости от типа датчика, подключенного к универсальному трансмиттеру XNX.

- 1. Подключите датчик к трансмиттеру XNX.
- 2. Подсоедините ручное устройство Foundation Fieldbus и установите связь с трансмиттером XNX.
- 3. Перейдите в Device Calibration menu (Меню калибровки устройства) в пользовательском интерфейсе Foundation Fieldbus.
- 4. Проверьте статус калибровки. Появится сообщение In Calibration Menu State (состояние меню в ходе калибровки).
- 5. Выберите Start Calibration (начать калибровку). Откроется окно с сообщением Processing Request (обработка запроса), вслед за которым появится Calibration Status (статус калибровки). Apply Zero Air (подать нуль-газ).
- 6. Выберите Finish (завершить). Окно закроется, а статус калибровки изменится на Apply Zero Air (подать нуль-газ).
- 7. Подайте нуль-газ (окружающий воздух) на датчик.
- Выберите Next Step (следующий шаг). Появится окно с сообщением Processing Request (обработка запроса), вслед за которым появится Wait until raw conc. is stable and in range (дождитесь стабилизации и установки диапазона неочищ. концентр.).
- Выберите Finish (завершить). Окно закроется, и статус калибровки изменится на Wait until raw conc. is stable and in range (дождитесь стабилизации и установки диапазона неочищ. концентр.). Концентрация неочищенного газа будет около нуля. Входной диапазон будет иметь вид in range (в диапазоне).
- Выберите Next Step (следующий шаг). Откроется сообщение Processing Request (обработка запроса), вслед за которым появится Press NEXT to Start Zero Calibration (нажмите «Далее», чтобы начать калибровку нуля).
- Выберите NEXT (далее). Откроется окно с сообщением Processing Request (обработка запроса), вслед за которым появится Calibration Status: Processing calibration (обработка данных калибровки).
- 12. Выберите Finish (завершить). Окно закроется, а статус калибровки изменится на Processing calibration (обработка данных калибровки).
- 13. Если калибровка нуля выполнена неудачно, калибровочный статус изменится на Zero Cal Failed. Press End Cal and Start Over (калибровка нуля не выполнена, нажмите End Cal and Start Over (завершить калибровку и начать заново)). Перейдите к шагу 23, чтобы завершить калибровку и начать новую. Если калибровка нуля завершена успешно, калибровочный статус изменится на Zero Cal Success. Press Next Step (калибровка нуля выполнена успешно, перейдите к следующему шагу). Выберите Next Step (следующий шаг). Откроется сообщение Processing Request (обработка запроса), вслед за которым появится Calibration Status: Apply Target Concentration (Статус калибровки. Ввести заданное значение концентрации.).

- 14. Выберите Next (далее).
- 15. Введите заданную концентрацию (напр., 50 % LEL).
- Выберите Next (далее). Откроется окно с сообщением Processing Request (обработка запроса), вслед за которым появится Target Concentration Being Accepted. Check Calibration Status (Принятие заданной концентрации. Проверьте калибровочный статус.).
- 17. Выберите Finish (завершить). Окно закроется.
- 18. Подайте на датчик газ с указанными характеристиками (напр., 50 % LEL).
- Выберите Next Step (следующий шаг). Откроется окно с сообщением Processing Request (обработка запроса), вслед за которым появится Press NEXT To Start Span Cal (нажмите «Далее», чтобы начать калибровку по проверочной смеси).
- Выберите Next (далее). Откроется окно с сообщением Processing Request (обработка запроса), вслед за которым появится Calibration Status: Processing calibration (обработка данных калибровки).
- 21. Выберите Finish (завершить). Окно закроется.
- 22. В калибровочном статусе появится сообщение Processing Calibration (обработка данных калибровки). Если калибровка по проверочной смеси выполнена неудачно, калибровочный статус изменится на Span Cal Failed. Press Next Step to Retry (калибровка по проверочной смеси выполнена неудачно, нажмите «Следующий шаг» и повторите попытку). Повторите шаги с 14 по 21. Если калибровка по проверочной смеси выполнена успешно, калибровочный статус изменится на Span Cal Success (калибровка по проверочной смеси выполнена успешно, нажмите End Calibration (закончить калибровку)).
- Выберите End Calibration (закончить калибровку). Откроется окно с сообщением Processing Request (обработка запроса), вслед за которым появится Calibration Status: Calibration Menu State (статус калибровки: состояние меню калибровки).
- 24. Выберите Finish (завершить). Окно закроется.

Таблицы параметров и ошибок

Описания параметров блока ресурсов

Алфавитный указатель	Мнемокод параметра	Описание
1	ST_REV	Уровень правки статических данных, привязанных к этому блоку
2	TAG_DESC	Может использоваться для определения группирования блоков
3	STRATEGY	Пользовательская информация
4	ALERT_KEY	Идентификационный код установки
5	MODE_BLK	Содержит доступные для блока режимы
6	BLOCK_ERR	Содержит статус ошибок
7	RS_STATE	Состояние функционального блока
8	TEST_RW	Используется только для проверки на соответствие требованиям
9	DD_RESOURCE	Строка с указанием метки ресурса
10	MANUFAC_ID	Код производителя расч. = 0х48574С
11	DEV_TYPE	Используется для определения местонахождения файла DD
12	DEV_REV	№ ред. MFG
13	DD_REV	№ ред. DD
14	GRANT_DENY	Опции для управления доступом к главной системе
15	HARD_TYPES	Типы аппаратных средств, которые доступны как Chan #
16	RESTART	Позволяет выполнить перезапуск
17	FEATURES	Указывает поддерживаемые опции блока ресурсов
18	FEATURE_SEL	Осуществляет выбор опций блока ресурсов
19	CYCLE_TYPE	Доступные способы блочных операций по идентификационному коду
20	CYCLE_SEL	Осуществляет выбор способа выполнения операции для этого ресурса
21	MIN_CYCLE_T	Длительность кратчайшего интервала в цикле
22	MEMORY_SIZE	Доступный объем памяти конфигурации в пустом ресурсе

Алфавитный указатель	Мнемокод параметра	Описание
23	NV_CYCLE_T	Интервалы записи в долговременную память
24	FREE_SPACE	Свободная память – (АІС = 0 %)
25	FREE_TIME	Свободное время на обработку (AIC = 0 %)
26	SHED_RCAS	Длительность промежутка времени, в течение которого возможен отказ от записи в RCAS
27	SHED_ROUT	Длительность промежутка времени, в течение которого возможен отказ от записи в ROUT
28	FAULT_STATE	Устанавливается при потере связи с блоком выходов
29	SET_FSTATE	Позволяет установить состояние ошибки вручную
30	CLR_FSTAT	Очистка состояния ошибки
31	MAX_NOTIFY	Макс. кол-во неподтвержденных уведомлений о срабатывании сигналов тревоги
32	LIM_NOTIFY	Установка MAX_NOTIFY
33	CONFIRM_TIME	Мин. время между повторным попытками для отчетов о срабатывании сигналов тревоги
34	WRITE_LOCK	Отключение возможности записи
35	UPDATE_EVT	Предупредительный сигнал, генерируемый при любом изменении в статических данных
36	BLOCK_ALM	Сведения о сбоях в системе
37	ALARM_SUM	Статус предупреждающего сигнала
38	ACK_OPTION	Осуществляет выбор сигналов тревоги, которые подтверждаются автоматически
39	WRITE_PRI	Приоритет сигнала тревоги, сгенерированного при отмене блокировки записи
40	WRITE_ALM	Предупреждающий сигнал, который генерируется при отмене блокировки записи
41	ITK_VER	Версия набора тестовых данных по совместимости

Алфавитный указатель	Мнемокод параметра	Вид_1	Вид_2	Вид_3	Вид_4
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	RS_STATE	1		1	
8	TEST_RW				
9	DD_RESOURCE				
10	MANUFAC_ID				4
11	DEV_TYPE				2
12	DEV_REV				1
13	DD_REV				1
14	GRANT_DENY		2		
15	HARD_TYPES				2
16	RESTART				
17	FEATURES				2
18	FEATURE_SEL		2		
19	CYCLE_TYPE				2
20	CYCLE_SEL		2		
21	MIN_CYCLE_T				4
22	MEMORY_SIZE				2
23	NV_CYCLE_T		4		
24	FREE_SPACE		4		
25	FREE_TIME	4		4	
26	SHED_RCAS		4		
27	SHED_ROUT		4		
28	FAULT_STATE	1		1	
29	SET_FSTATE				
30	CLR_FSTAT				
31	MAX_NOTIFY				1

Представления параметров блока ресурсов

Алфавитный указатель	Мнемокод параметра	Вид_1	Вид_2	Вид_3	Вид_4
32	LIM_NOTIFY		1		
33	CONFIRM_TIME		4		
34	WRITE_LOCK		1		
35	UPDATE_EVT				
36	BLOCK_ALM				
37	ALARM_SUM	8		8	
38	ACK_OPTION				2
39	WRITE_PRI				1
40	WRITE_ALM				
41	ITK_VER				2
	Всего	22	30	22	31

Алфавитный указатель	Мнемокод параметра	Описание
1	ST_REV	Уровень правки статических данных, привязанных к этому блоку
2	TAG_DESC	Может использоваться для определения группирования блоков
3	STRATEGY	Пользовательская информация
4	ALERT_KEY	Идентификационный номер пользователя
5	MODE_BLK	Содержит доступные для блока режимы
6	BLOCK_ERR	Содержит статус ошибок
7	UPDATE_EVT	Генерируется при изменении статических данных в блоке
8	BLOCK_ALM	Указывает на присутствие проблемы в системе
9	TRANSDUCER_ DIRECTORY	Указывает номер и начальные индексы в преобразовательном блоке
10	TRANSDUCER_ TYPE	Определение типа преобразователя
11	XD_ERROR	Дополнительные коды ошибок
12	COLLECTION_DIRECTORY	Указывает номер, начальные индексы и определения элемента DD
13	PRIMARY_ VALUE	Измеренное значение
14	DATE_FORMAT	Формат представления даты, где день указывается как конкретная календарная дата
15	STR_DEVICE_ DATE_TIME	Дата и время в устройстве
16	TIME_DATE_ STAMP	Метка даты и времени в статусе устройства
17	SENSOR_TYPE	Определение типа подключенного датчика
18	GAS_NAME	Определение названия датчика газа
19	UNIT_STRING	Определение измерительного элемента датчика газа
20	SEN_SW_VER	Версия программного обеспечения подключенного датчика
21	SEN_SN	Серийный номер подключенного датчика
22	ZEN_SN	Серийный номер устройства

Параметры преобразовательного блока

Алфавитный указатель	Мнемокод параметра	Описание
23	CURR_ALM_ LEVEL	Указывает существующий уровень сигналов тревоги в устройстве
24	ACTIV_INSTR_ FAULT	Указывает действующее сообщение о неисправности прибора в устройстве
25	RESET_ ALMS_N_ FAULTS	Осуществляет сброс всех сигналов тревоги и сообщений о неисправностях, которые есть в устройстве
26	LOWER_ALM_LIMIT	Указывает нижний предел для сигналов тревоги устройства
27	UPPER_ALM_ LIMIT_RANGE	Указывает максимально возможный предел для сигналов тревоги устройства
28	LOWER_ALM_LIMIT_ RANGE	Указывает минимально возможный предел для сигналов тревоги устройства
29	DEVICE_MIN_RANGE	Указывает минимально возможный диапазон для устройства с подключенным датчиком
30	DEVICE_MAX_ RANGE	Указывает максимально возможный диапазон для устройства с подключенным датчиком
31	ALM_ THRESHOLDS_ LOW	Указывает нижний предел порога сигнала тревоги
32	ALM_THRESHOLDS_ HIGH	Указывает верхний предел порога сигнала тревоги
33	DISPLAY_RANGE	Указывает диапазон вывода на дисплей для устройства с подключенным датчиком
34	DISPLAY_ RANGE_ LOWER	Указывает нижний предел диапазона вывода на дисплей для устройства с подключенным датчиком
35	RELAY_ALM_CFG	Указывает фиксированную и нефиксированную конфигурацию сигналов тревоги
36	CONFIG_ STATE_ALM	Сигнал изменения конфигурации по состоянию (State) устройства
37	ACCEPT_ CONFIG_ CHANGE_ALM	Сигнал состояния устройства в конфигурации после изменений, подтвержденных пользователем
38	START_IR_POLLING	Запрос параметров ИК-датчика в устройстве

Алфавитный указатель	Мнемокод параметра	Описание
39	POWER_ SUPPLY	Питание, измеренное устройством, т. е. поданное питание на устройство
40	POWER_ SUPPLY_ VOLTAGE_33	Питание, измеренное на подключении платы опций, т. е. поданное на плату опций
41	POWER_SUPPLY_ VOLTAGE_SENS_240	Питание, измеренное на подключенном датчике, т. е. поданное на датчик
42	POWER_SUPPLY_ VOLTAGE_SENS_50	Питание, измеренное на подключении датчика (внутреннем), т. е. внутренний источник питания датчика
43	WIN_TEMP	Температура окна – действительно только для ИК (Excel) датчика
44	SENSOR_ TEMP	Температура устройства
45	UNIT_TEMP	Указание устройства измерения температуры
46	RC_OPTICAL_ PARAMETERS	Оптические параметры от подключенного ИК-датчика
47	BLOCK_ FAULT_TIME	Указывает время н а обнаружение неисправности ИК датчиком (Excel) после того, как длительность блокировки пучка превысила заданное значение
48	OTHER_ FAULT_TIME	Указывает время на создание отчета о неисправности ИК датчиком (Excel) после того, как длительность блокировки пучка превысила заданное значение
49	LOW_SIGNAL_ LEVEL	Указывает нижний уровень сигнала для ИК датчика (Excel), подключенного к устройству
50	RESET_EXCEL	Программный сброс значений по ИК датчикам (Excel/Optima)
51	RAW_GAS_ CONC	Указывает концентрацию газа, измеренную датчиком в процессе калибровки
52	INHIBIT_ DEVICE_ LONG_TERM	Указывает устройство, заблокированное пользователем в течение длительного времени
53	INHIBIT_DEVICE_STATUS	Указывает статус блокировки устройства
54	SPAN_CAL_GAS_CONC	Указывает концентрацию газа для калибровки датчика по проверочной смеси

Алфавитный указатель	Мнемокод параметра	Описание	
55	CLB_OPT	Указывает варианты калибровки датчика	
56	CLB_STATUS	Указывает статус калибровки датчика	
57	CLB_HELP_ STATUS	Указывает статус справки для калибровки датчика	
58	BUMP_TEST_ OPT	Указывает выполнение ударных испытаний для подключенного датчика со стороны устройства	
59	CALIB_ INTERVAL	Указывает периодичность калибровок датчика	
60	SIMULATE_ OPT	Указывает моделирование устройством статуса датчика	
61	ALIGN_EXCEL	Выполняет юстировку для ИК датчика типа Excel	
62	CURR_MON_ STATE	Указывает статус контроля в устройстве	
63	RC_PATH_ LENGTH	Указывает протяженность тракта для ИК датчика типа Excel	
64	SENSOR_LIFE	Указывает оставшийся эксплуатационный ресурс датчика	
65	CONFIG_ STATE	Состояние конфигурации устройства	
66	ACCEPT_ CONFIG_ CHANGE	Сигнал состояния устройства в конфигурации после подтверждения сделанных изменений	
67	RC_MA_ SETTINGS	Настройки мА для устройства	
68	ANLG_CURR_ OP	Указывает выходной ток 4–20 мА от устройства	
69	CLB_CURR_OP	Калибровка выходного тока 4–20 мА от устройства	
70	CLB_CURR_ DAC_CNT	Калибровка выходного тока 4–20 мА от устройства с настройками DAC	
71	FORCE_ANLG_ CURRENT	Принудительное задание выходного тока 4–20 мА от устройства	
72	GAS_NAME_SCROLL	Означает прокрутку списка газов для подключенного к устройству датчика	
73	INFO_CAL_ INDEX	Указывает индекс для газа	

Алфавитный указатель	Мнемокод параметра	Описание
74	CURR_CAL_ INDEX	Означает прокрутку индекса для газа
75	SEL_GAS_ CLB_OPTION	Калибровка подключенного к устройству датчика
76	MV_SENSOR_ TYPE_INDEX_ ACTUAL	Указывает действующий индекс для подключенного мВ датчика
77	MV_SENSOR_TYPE	Указывает тип подключенного мВ датчика
78	MV_SENSOR_ TYPE_SCROLL	Указывает прокрутку индекса для подключенного мВ датчика
79	MV_SENSOR_TYPE_INDEX	Указывает индекс для подключенного мВ датчика
80	MV_SEL_ OPTION	Указывает варианты выбора мВ датчика
81	SEL_EVENT_ FILTER_TYPE	Указывает тип фильтра событий
82	SEL_EVENT_ HISTORY_OPT	Указывает опции журнала событий
83	EVENT_ HISTORY	Указывает журнал событий

Алфавитный указатель	Мнемокод параметра	Описание	
1	ST_REV	Уровень правки статических данных, привязанных к этому блоку	
2	TAG_DESC	Может использоваться для определения группирования блоков	
3	STRATEGY	Пользовательская информация	
4	ALERT_KEY	Идентификационный код установки	
5	MODE_BLK	Содержит доступные для блока режимы	
6	BLOCK_ERR	Содержит статус ошибок	
7	PV	Основное аналоговое значение	
8	OUT	Основное рассчитанное аналоговое значение	
9	SIMULATE	Позволяет вручную задавать значения вводов/ выводов	
10	XD_SCALE	Масштаб и единичные значения от преобразовательного блока	
11	OUT_SCALE	Масштаб и единица измерения этого блока	
12	GRANT_ DENY	Опции для управляющего доступа главных компьютеров и локальных панелей управления к рабочим, настроечным параметрам и параметрам сигнализации	
13	IO_OPTS	Опции, которые пользователь может выбирать для изменения обработки блоком вводов/ выводов	
14	STATUS_ OPTS	Опции, которые пользователь может выбирать для получения статуса в блоке	
15	CHANNEL	Канал передачи логических команд аппаратных средств, подключенный к блоку вводов/выводов	
16	L_TYPE	Определяет, могут ли значения, передаваемые преобразовательным блоком блоку аналоговых данных (Al), использоваться напрямую (Direct), или значение указано в разных единицах измерения и должно преобразовываться, линейно (Indirect) или с извлечением квадратного корня (Indirect Sqr Root), используя входной диапазон, определяемый преобразователем и связанным выходным диапазоном.	

Описания параметров блока аналоговых входов

Алфавитный указатель	Мнемокод параметра	Описание
17	LOW_CUT	Предел, используемый в обработке sq rt (вычислении квадратного корня)
18	PV_FTIME	Постоянная времени в одинарном экспоненциальном фильтре для PV
19	FIELD_VAL	Необработанное значение полевого устройства в %-ом диапазоне
20	UPDATE_ EVT	Предупредительный сигнал, генерируемый при любом изменении в статических данных
21	BLOCK_ALM	Сведения о сбоях в системе
22	ALARM_ SUM	Статус предупреждающего сигнала
23	ACK_ OPTION	Осуществляет выбор сигналов тревоги, которые подтверждаются автоматически
24	ALARM_HYS	Гистерезис сигнала тревоги в %
25	HI_HI_PRI	Приоритет сигнала опасного повышения уровня
26	HI_HI_LIM	Установка сигнала опасного повышения уровня
27	HI_PRI	Приоритет сигнала повышения уровня
28	HI_LIM	Установка сигнала повышения уровня
29	LO_PRI	Приоритет сигнала понижения уровня
30	LO_LIM	Установка сигнала понижения уровня
31	LO_LO_PRI	Приоритет сигнала опасного понижения уровня
32	LO_LO_L IM	Установка сигнала опасного понижения уровня
33	HI_HI_ALM	Статус сигнала опасного повышения уровня
34	HI_ALM	Статус сигнала повышения уровня
35	LO_ALM	Статус сигнала понижения уровня
36	LO_LO_ALM	Статус сигнала опасного понижения уровня

Алфавитный указатель	Мнемокод параметра	Вид_1	Вид_2	Вид_3	Вид_4
1	ST_REV	2	2	2	2
2	TAG_DESC				
3	STRATEGY				2
4	ALERT_KEY				1
5	MODE_BLK	4		4	
6	BLOCK_ERR	2		2	
7	PV	5		5	
8	OUT	5		5	
9	SIMULATE				
10	XD_SCALE		11		
11	OUT_SCALE		11		
12	GRANT_DENY		2		
13	IO_OPTS				2
14	STATUS_OPTS				2
15	CHANNEL				2
16	L_TYPE				1
17	LOW_OUT				4
18	PV_FTIME				4
19	FIELD_VAL	5		5	
20	UPDATE_EVT				
21	BLOCK_ALM				
22	ALARM_SUM	8		8	
23	ACK_OPTION				2
24	ALARM_HYS				4
25	HI_HI_PRI				1
26	HI_HI_LIM				4
27	HI-PRI				1
28	HI_LIM				4
29	LO_PRI				1
30	LO-LIM				4
31	LO_LO_PRI				1
32	LO_LO_LIM				4
33	HI_HI_ALM				
34	HI_ALM				
35	LO_ALM				
36	LO_LO_ALM				
	Всего	31	26	31	46

Представления параметров блока аналоговых входов

Ошибки конфигурации блоков

Ошибка	Решение
Принять новую конфигурацию сигналов тревоги	Новая конфигурация сигналов тревоги не принимается устройством. Выбрать принятие конфигурации сигналов тревоги.
Принять новые параметры неисправностей Excel	Новая конфигурация неисправностей Excel не принимается устройством. Выберите принять конфигурацию.
Привязать конфигурацию по ссылке	Неприменимо.
Включен режим моделирования	Устройство находится в режиме моделирования. Завершите сеанс моделирования, выполняемый устройством.
Сбой устройства	Устройство находится в режиме сбоя. Соотнесите код неисправности с диагностической ошибкой на устройстве.
Обслуж. требуется в скором времени	Устройство находится в режиме предупреждения. Соотнесите код предупреждения с предупреждением диагностики на устройстве.
Обслуж. требуется в скором времени	Устройство находится в режиме сбоя. Соотнесите код неисправности с диагностической ошибкой на устройстве.
Бездействующий режим	Устройство не работает. Обратитесь в НА или переведите устройство в автоматический режим.

Если трансмиттер XNX показывает код неисправности F130 («Сбой коммуникационной цепи опции»), он обнаружил, что отсутствует связь между ним и платой Foundation Fieldbus. Проверьте всю проводку. Если код неисправности не исчезает, обратитесь в сервисную службу Honeywell Analytics за дальнейшими указаниями.

Предупреждение. При падении напряжения ниже рабочего диапазона и потере связи проверьте источник питания или обратитесь в сервисную службу компании НА.

Гарантийные обязательства

Гарантия

Все товары разработаны и произведены в соответствии с действующими международными стандартами компанией Honeywell Analytics согласно системе контроля качеством, сертифицированной по стандарту ISO 9001.

Honeywell Analytics (далее HA) гарантирует, что универсальный трансмиттер XNX не имеет дефектов материала или производственного брака при условии нормальной эксплуатации и обслуживания.

Устройство	Срок гарантии
Универсальный измерительный преобразователь XNX (кроме расходных компонентов)	36 месяцев с даты отгрузки покупателю
Электрохимические датчики XNX (номер по каталогу XNX-XS ****)	12 месяцев с момента ввода в эксплуатацию сертифицированным представителем Honeywell Analytics
Многоцелевой детектор	или
(MPD)	18 месяцев с даты отгрузки со склада Honeywell Analytics
	В зависимости от того, что случится ранее.

Условия настоящей гарантии не распространяются на обслуживание в полевых условиях или у заказчика. Возмещение затрат времени и дорожных расходов по гарантийному обслуживанию на объекте производится по стандартным тарифам Honeywell Analytics. За дополнительной информацией относительно заключения договоров на обслуживание обратитесь к представителю Honeywell Analytics.

Условия гарантии

- 1. Ограниченная гарантия на изделия компании Honeywell Analytics (HA) распространяется только на продажу новых изделий, не бывших в употреблении, при их приобретении первым покупателем у компании HA, ее официального дистрибьютора, дилера или представителя. Гарантия не распространяется: на расходные материалы, например сухие батареи, фильтры и предохранители или запасные части, необходимость в которых возникла в результате нормального износа продукта; на любое изделие, которое, на взгляд работников компании HA, было модифицировано или повреждено вследствие небрежности, неправильного использования, аварии, ненормальных условий работы, ненадлежащего обращения, загрязнения датчика; дефектов, связанных с неправильным монтажом, ремонтом, выполненным не имеющим допуска специалистом, или использования неразрешенных аксессуаров/деталей с изделием.
- Любые претензии к гарантийному продукту компании НА должны предъявляться в период действия гарантии и в разумный срок после обнаружения дефекта. При предъявлении гарантийной рекламации на покупателе лежит обязанность получить в НА номер сервисного события (SE#) и по возможности возвратить изделие с

нанесенным на видном месте номером SE# и подробным описанием неисправности. 3. НА, по собственному усмотрению, может принять решение отправить покупателю

- товар на замену до получения бракованного изделия. Покупатель обязуется возвратить бракованное изделие в течение 30 дней или оплатить товар на замену.
- Покупатель несет ответственность за оплату транспортных расходов по доставке от покупателя в НА. НА несет ответственность за оплату транспортных расходов по доставке от НА к покупателю.
- 5. В случае, когда установка смонтирована стационарно или если отсутствует возможность возвратить изделие, покупатель должен подать претензию в сервисный отдел НА. Специалист по обслуживанию будет направлен на объект с оплатой из расчета за каждый день работы. Там где гарантийная претензия будет признана действительной, бракованное изделие будет бесплатно отремонтировано или заменено. Претензия по гарантии будет принята, если она соответствует всем гарантийным условиям.
- 6. Если, по мнению работников компании НА, гарантийная рекламация имеет силу, компанией Honeywell Analytics будет выполнен ремонт или замена дефектного изделия с последующей пересылкой отремонтированного или замененного изделия покупателю. Если, по мнению НА, претензия по гарантии выдвинута несправедливо, компания НА, по выбору покупателя, вернет продукт без изменений за счет покупателя, отремонтирует устройство по цене, действующей во время покупки, заменит устройство на другое по цене, действующей во время покупки, или утилизирует устройство на сохраняет за собой право потребовать оплаты посещения сервисного специалиста по обычным ставкам, которые действовали на момент получения претензии.
- Ни при каких условиях ответственность компании НА не может превысить начальную цену, оплаченную покупателем за изделие.

Претензии потребителей

Если вы приобрели продукцию НА в качестве потребителя, вышеизложенные условия гарантии не влияют на любые имеющиеся у вас права в соответствии с действующим законодательством о защите прав потребителей.

Honeywell Analytics сохраняет за собой право изменить это правило в любое время. Для получения последней информации по гарантийным обязательствам обратитесь в компанию Honeywell Analytics.

По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231 Ангарск (3955)60-70-56 Архангельск (8182)63-90-72 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Благовещенск (4162)22-76-07 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48

Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Коломна (4966)23-41-49 Кострома (4942)77-07-48 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курган (3522)50-90-47 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Ноябрьск(3496)41-32-12

Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Петрозаводск (8142)55-98-37 Псков (8112)59-10-37 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саранск (8342)22-96-24 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35

Сыктывкар (8212)25-95-17 Тамбов (4752)50-40-97 Тверь (4822)63-31-35 Тольятти (8482)63-91-07 Томск (3822)98-41-53 Тула (4872)33-79-87 Тюмень (3452)66-21-18 Улан-Удэ (3012)59-97-51 Ульяновск (8422)24-23-59 **Уфа** (347)229-48-12 Хабаровск (4212)92-98-04 Чебоксары (8352)28-53-07 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Чита (3022)38-34-83 Якутск (4112)23-90-97 Ярославль (4852)69-52-93

Россия +7(495)268-04-70

Казахстан +7(7172)727-132

Киргизия +996(312)96-26-47

сайт: www.honeywell.nt-rt.ru || эл. почта: hwn@nt-rt.ru