По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231
Ангарск (3955)60-70-56 Архангельск (8182)63-90-72
Астрахань (8512)99-46-04
Барнаул (3852)73-04-60
Белгород (4722)40-23-64 Благовещенск (4162)22-76-07
Брянск (4832)59-03-52 Владивосток (423)249-28-31 Владикавказ (8672)28-90-48 Владимир (4922)49-43-18 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48

Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Коломна (4966)23-41-49
Кострома (4942)77-07-48
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курган (3522)50-90-47
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12
Новокузнецк (3843)20-46-81
Новосибирск (383)227-86-73
Ноябрьск(3496)41-32-12

Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Петрозаводск (8142)55-98-37
Псков (8112)59-10-37
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саранск (8342)22-96-24
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35

Сыктывкар (8212)25-95-17
Тамбов (4752)50-40-97
Тверь (4822)63-31-35
Тольятти (8482)63-91-07
Томск (3822)98-41-53
Тула (4872)33-79-87
Тюмень (3452)66-21-18
Улан-Удэ (3012)59-97-51
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Чебоксары (8352)28-53-07
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Чита (3022)38-34-83
Якутск (4112)23-90-97
Ярославль (4852)69-52-93

КОНТРОЛЛЕРЫ

Технические характеристики на DCP50, DCP551, DCP250

DCP50 Digital Controller Programmer

Specification

Overview

The DCP50 is a microprocessor-based 1/16 DIN controller programmer that combines a high degree of functionality and reliability at a low price. It is capable of supporting up to 4 program profiles with up to 16 segments per profile. It is fully dedicated to monitor and control temperatures, pressures and levels in a wide range of applications such as the plastics and food industries, furnaces, packaging and environmental chambers. The large and easy-to-read dual 4-digit display and tactile keypad make the DCP50 easy to configure and use. It's outstanding flexibility enables you to configure any unit for any application and change it if required.

Features

Dual Display

Two 4-digit displays with 7 LED segments, each configurable for:

- PV and SP (non adjustable)
- PV and SP (adjustable)
- PV and Ramping SP
- PV only

Programs / Segments
A maximum of 4 program profiles can be stored and up to 16 segments con be programmed to each profile.

Easy to Configure

Two different configuration levels (configuration mode and set-up mode) provide easy access to parameters. A 4-digit security code prevents unauthorized changes.
Moisture Resistant Front-face
Meets NEMA 3 / IP65 front-face protection against dust and water.

Universal Input
Accepts seven different types of thermocouples, RTDs, current and volt linear inputs. All inputs are configurable as standard.

Universal Power Supply

The DCP50 can operate on any line voltage from 90 Vac to 264 Vac at $50 / 60 \mathrm{~Hz}$ continuously. A $24 / 48 \mathrm{Vac} / \mathrm{dc}$ model is available as an option.

PC Software Tools

PC-based software is available for ease of configuration and monitoring.

Easy Output Selection and Upgrade

With only three basic modules (current, triac, and relay output) and plug-in options, you can configure the controller as you want for a wide range of applications.

Up to Three Outputs

The DCP50 provides up to three outputs for time and current proportioning, duplex mode (heat/cool), PV or SP retransmission, and events.

Event Strategy

Two soft event alarms on PV, deviation high/low/absolute. A special loop alarm is also provided to detect faults in the control loop by continuously analyzing the PV response to the control output. Alarm inhibit is available on power up and setpoint switching.

Manual/Automatic Mode

If enabled via configuration, Manual control (via bumpless transfer) is enabled by simply pressing the frontface SETUP key.

Pre-tuning and Self-tuning Strategy

Pre-tuning is used to set up the PID parameters close to the optimum values which might be used by the self-tuning algorithm to subsequently optimize the tuning parameters.

Guaranteed Soak

Guaranteed soak feature allows the profile to sense if the PV is in range of the end of a ramp before starting a soak.

Profile Recovery and Cycling

Profile recovery feature allows a 'cold start' or 'warm start'. Profile cycling provides a range from 'no cycling' to 'infinite cycling'.

Digital Input

The digital input option allows remote run / hold capability.

Communication

An optional RS485 communications interface provides a link between up to 32 units and a host computer through Modbus RTU protocol at up to 9600 baud.

Highly Secure

A non-volatile memory based on EEPROM technology ensures data integrity during loss of power supply, with retention of more than 100 years. The design is centered around a battery concept. A 4-digit security code prevents unauthorized or accidental change.

Optional Features

The following can be selected via the Model selection Guide (see page 7):

- RS485 Modbus RTU communication
- Digital Input (remote RUN/HOLD)
- Output 2
- Output 3
- Power Supply 24/48 Vac/dc

Physical Description

The DCP50 controller programmer is housed in a 110 mm (4.33 inches) deep case with the standard gray bezel. It can be mounted in a $1 / 16$ DIN panel cutout. By using the pre-assembled mounting fixture delivered with the unit, you can easily and securely install the controller into the panel cutout. Modular plug-in construction allows rapid access and saves time. All inputs and outputs are connected on the rear terminal block by screws.

Operator Interface

Four display combinations are offered to the operator. The upper 4-digit 7segment display is always dedicated to monitor the PV. The lower display can show:

- SETPOINT (read only)
- SETPOINT (adjustable)
- RAMPING setpoint (ramp mode)
- BLANK

UPPER DISPLAY - Four characters dedicated to show the PV. In configuration mode, it shows the parameter value or selection.

LOWER DISPLAY - Four characters dedicated in normal operation to display the setpoint. In configuration mode, it displays the parameter name.

RUN - LED indicates that the programmer is in the run mode.

AT - LED indicates that the controller is in self-tune mode. When flashing, controller is in pre-tune mode.

Figure 2 - Operator Interface

Key functions

RUN

Selects run or hold mode, can also abort program.

SET Allows operator mode parameters to be scrolled. In

 UP combination with the "Upper" key, allows configuration mode or set-up mode to be entered.Increases setpoint, output or configuration parameter values.

Decreases setpoint, output or configuration parameter values.

Universal Inputs

All input types are available on any unit. By positioning a jumper on the CPU board, the thermocouples, RTDs or linear input families can be field selected. Selection among the various types of inputs is made by prompt configuration. As soon as the Process Variables reaches a value of the input range limits, the controller displays a message. A sensor break indication is also provided. A configurable digital filter is available from 0.5 seconds to 100.0 seconds.

Outputs

Four types of outputs (Relay, Solid State Relay Driver, Solid State Triac, or Linear) are selectable for three outputs, through the model selection guide or by adding a plug-in module for outputs 2 and 3.

Output Algorithms

The DCP50 is available with the following output algorithms:

- Time proportional:

ON/OFF or time proportional with electromechanical relay SPDT 2 A, solid state relay (SSR) driver (open collector), or solid state (SS) Triac.

- Current proportional:

Supply directly proportional current or volt signal to the final control elements which require 0-20 mA, 4-20 mA, 0-10 V or 0-5 V.

- Time proportional duplex: Three duplex modes can be selected, either ON/OFF duplex or time proportional duplex (heat/cool with two proportional bands, two cycle times and deadband).
- Current proportional duplex: In addition to the first current/volt output, provides a second similar output with its own proportional band.
- Current/Time or Time/Current duplex:
Provides a variation of traditional time or current duplex mode by mixing current and time proportioning together.

Control Algorithms

Three control algorithms can be set up through the configuration menu:

- On/Off
- PID
- PD + MR

Configuration

There are two levels of configuration. The SET-UP mode allows modification of current parameters such as tuning parameters, event alarm values, setpoint limit, ramp enable, automanual mode enable, auto pre-tune enable.

The CONFIGURATION mode is more oriented to unit personality: input selection, output 2 and 3 usage, event alarm type, communication address, lockout code, hardware definition coding.

Control Mode

In the base mode with no program running or held, Manual control may be selected via the Set Up key. Manual or automatic mode with bumpless transfer is standard feature. In manual mode, the operator can directly control the output through the two front face keys (raise and lower keys). The output value is monitored on the lower display.

Event Alarms

Outputs 2 and 3 can be used as event alarms. Two electromechanical single pole double throw relays can activate external equipment when event alarm setpoints are reached. An LED is also activated on the front-face. A direct or reverse acting event alarm output can be configured. A logical combination of the two event alarms: OR, AND or hysteresis (active when both event alarms are active, becomes inactive when both event alarms are inactive) can be set which associates the two event alarms status before energizing the relay. In order to detect a defective control loop, the controller can supply a special loop alarm control by continually monitoring the PV response to output demand. A timer is automatically set up when any output is on saturation mode. When the timer reaches twice the reset time with no PV response, then the loop alarm is activated. With this soft alarm, there is no need for a heater breaker, saving wiring time and costs.

Display

Dual, four-digit LED display with decimal point location configurable up to three places for linear ranges only.

PC Software Tools

The optional DCP50 Support Software kit provides a Windows-based configuration tool and a special hardware connector. The connector uses the serial port on a PC along with a standard connector on the underside of the DCP50 Programmer. The "Program Editor" portion of the software allows easy graphical set up of the setpoint profiles and features upload/download of programs, save program information to disk, and create hard copy of profile information. The "Configurator" portion of the software allows instrument configuration. This software does not require the RS485 communications option.

Specifications

Technical data

Accuracy	0.25 \% of span ± 1 LSD
Number of Programs	4 maximum
Number of Segments	16 per program maximum
Segment Time	0 to 99 hours 59 minutes; or 0 to 99 minutes 59 seconds (time unit selectable)
Guaranteed Soak	Sets Guaranteed Soak width 0 to 1000 U
Cycle	Sets program count 0 to 9999 or INF (infinite)
Pattern Link	Sets program number 0 to 4 (0: no link)
Temperature Stability	0.01 \% of span per ${ }^{\circ} \mathrm{C}$
Input Signal Failure	Fail-safe output value: Achieved when burnout is detected. Value depends on configuration. For thermocouple and $m V$ input detected by any lead break: Upscale burnout For RTD: Burnout detected by any lead break Current or volt input: Burnout set by open circuit detection
Input Impedance	Volt impedance: 47 Kohms Current input: 4.7 ohms All others: 100 Mohms
Input Sampling Rate	Four samples per second
Input Filter	Digital filter configurable from front panel 0.0 (Off), from 0.5 seconds to 100.0 seconds in 0.5 seconds increment
Input Resolution	14 bits approximately, always four times better than display resolution
Input Isolation	Universal input isolated at 2500 V from all outputs except SSR and from power supply
Stray Rejection	Common mode rejection: $>120 \mathrm{~dB}$ at $50 / 60 \mathrm{~Hz}$ Serial mode rejection: $>500 \%$ of span at $50 / 60 \mathrm{~Hz}$
Approvals	UL, Product design to meet CE MARK requirement
Control Output Type	Type available: Outputs 1 and 2: Linear, Electromechanical relay, Solid state relay drive (open collector), Solid state Triac Output 3: Linear (retransmission only), Electromechanical relay, SSR drive (open collector) Linear output: 0-20 mA, 4-20 mA, 0-5 V, 0-10 V (field configurable) Accuracy: ± 0.5 \% (250 ohms for mA, 2 Kohms for volt) Resolution: 80 bits in 250 ms (10 bits in 1 second typical >10 bits in >1 second) Load impedance: 500 ohms max current output, 500 ohms min volt output Isolation: Isolated 2500 V from all other inputs and outputs Range selection method: Jumper positioning and front panel code setting Temperature stability: $0.01 \% /{ }^{\circ} \mathrm{C}$ Electromechanical relay: SPDT contact Resistive load: 2 A at 120 V or 240 V Life time: > 500000 operations at rated voltage/current Solid state relay drive/TTL: Drive capability: $\mathrm{SSR}>4.3 \mathrm{Vdc}$ into 250 ohms minimum Isolation: Not isolated from input and other SSR output Solid state Triac: Operating voltage range: $20-28 \mathrm{Vrms}(47-63 \mathrm{~Hz})$ Current rating: 0.01-1 A (full cycle rms on-state @ $25^{\circ} \mathrm{C}$) Maximum non-repetitive surge current (16.6ms): 25 A peak OFF-state min. dv/dt \& max. leakage @ rated voltage: $500 \mathrm{~V} / \mu \mathrm{s}$ and 1 mA rms OFF-state repetitive peak voltage, Vdrm: 600 V minimum ON-state max. voltage drop @ rated current: 1.5 V peak

Technical data (continued)	
Event Alarms	Maximum number of event alarms: 2 soft event alarms setpoint + 1 loop alarm Event alarm inhibit available on power up and setpoint switching Event alarm output: Up to two relays or SSR output on outputs 2 and 3 Types: PV high or low, band, deviation high or low, loop Combination event alarms: Logical "OR", "AND" or hysteresis of event alarms available to individual hardware output
Loop Control	Automatic tuning type: Pre-tune and self-tune Proportional bands: 0 (inactive), 0.5 \% to 999.9 \% of input span with 0.1% increments. Two proportional bands available for duplex mode Reset: Off or from 1s to 99 min 59 s Rate: From 0 s to 99 min 59 s Manual reset: from 0 to 100% of output (single output), from -100 \% to 100% of output (dual output) Deadband: ± 20 of PB1 + PB2 ON/OFF hysteresis: 0.1% to 10.0% of input span Auto/manual mode: Front key selectable with bumpless transfer between automatic and manual mode Cycle times: Up to two cycle times available for time duplex control Selection: $0.5,1,2,4,8,16,32,64,128,256$, or 512 seconds Setpoint ramp: From 1 to 9999 engineering units per hour
Retransmission Output	Current and volt output of output 3 can be selected to retransmit the process value or setpoint
Communication Interface	RS485 Modbus RTU Baud rate: 1200, 2400, 4800 or 9600 baud Link characteristics: 32 drops maximum, Modbus protocol, two wires
Mounting	Plug-in with pre-assembled mounting fixture
Wiring Connection	Screw terminals on the rear of the case (combination head)
Power Consumption	4 W
Physical	Weight: 210 grams maximum Height: 48 mm / 1.89 in Width: $48 \mathrm{~mm} / 1.89$ in Depth: $110 \mathrm{~mm} / 4.33$ in Cut out: $45 \mathrm{~mm} \times 45 \mathrm{~mm} / 1.77 \mathrm{in} \times 1.77$ in
Environmental	EMI Susceptibility: Designed to meet EN55101 EMI Emission: Designed to meet EN55022 Safety Considerations: Designed to comply with IEC1010-1as far as applicable
Front Panel Sealing	NEMA 3 / IP65

Universal Input Actuations

Ranges

Thermocouple types	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
(Fixed decimal) R	32-3002	0-1650
S	32-3000	0-1649
J	32.0-401.7	0.0-205.4
J	32-842	0-450
J	32-1401	0-761
T	-328-503	-200-262
T	32-501.0	0-260.6
K	-328-1399	-200-760
K	-328-2503	-200-1373
L	32-402.2	0.0-205.7
L	32-841	0-450
L	32-1403	0-762
	$211-3315$	100-1824
\mathbf{N}	$32-2550$	0-1399
C/W5	32-4201	0-2316
RTD (3 wires connection)	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
PT100 (IEC) $\alpha=0.00385$	32-1471	0-800
(Fixed decimal)	32-571	0-300
	-149.7-211.9	-100.9-100.0
	32-213.6	0.0-100.9
	-328-402	-200-206
	-149.7-999.1	-100.9-537.3
Linear (Current and Voltage)	$10-50 \mathrm{mV}$	$0-50 \mathrm{mV}$
	4-20 mA	$0-20 \mathrm{~mA}$
	$1-5 \mathrm{~V}$	$0-5 \mathrm{~V}$
	2-10 V	$0-10 \mathrm{~V}$

All inputs noted above are field configurable.

Operating Conditions
$\left.\begin{array}{|l|ccc|}\hline & \begin{array}{c}\text { Reference } \\ \text { Conditions }\end{array} & \begin{array}{c}\text { Operative } \\ \text { Limits }\end{array} & \begin{array}{c}\text { Transportation and } \\ \text { Storage }\end{array} \\ \hline \text { Ambient Temperature } & \begin{array}{c}20^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C} \\ \left(68^{\circ} \mathrm{F} \pm 4^{\circ} \mathrm{F}\right)\end{array} & \begin{array}{c}0^{\circ} \mathrm{C} \text { to } 55^{\circ} \mathrm{C} \\ \left(322^{\circ} \mathrm{F} \text { to } 131^{\circ} \mathrm{F}\right)\end{array} & \begin{array}{c}-20^{\circ} \mathrm{C} \text { to } 80^{\circ} \mathrm{C} \\ \left(-4^{\circ} \mathrm{F} \text { to } 176^{\circ} \mathrm{F}\right)\end{array} \\ \hline \text { Relative Humidity } & 60-70 \% & 20-95^{\%} \% \text { non -condensing }\end{array}\right]$

DCP250 Single or two loop controller and programmer with graphic display Specification 57-77-03-18

Figure 1- DCP250 Controller Programmer

Key features

1/4 DIN size

Single or Two Loop (1 or 2 control loops)
Graphical / Text LCD Display (red/green)

- USB host for configuration (read/write) and logged data (read)
- Profiler 256 segments shared in 64 programs
o Datalogger function with real time clock
- Modbus RS485 or Modbus TCP Ethernet
- Standard CE, UL
- ON/OFF, PID heat only \& Heat/Cool, Valve Motor Drive, Ratio Cascade Control
- 255 segment profiler shared in 64 programs
- 5 PID sets for manual or automatic gain scheduling
- 7 Alarms - absolute, deviation, rate of change, sensor break, recorder memory, power
- Ethernet - Modbus TCP, RS485 - Modbus RTU (Master/Slave)
- Up to to 2 analog inputs, 9 outputs, remote setpoint input, 9 digital inputs

Performance Specifications ${ }^{1}$

UNIVERSAL INPUT 1 AND 2

Sampling Rate: 10 per second.
Resolution: Impedance: 16 bits. Always four times better than display resolution.
Temp Stability: Supply $>10 \mathrm{M} \Omega$ resistive, except $\mathrm{DC} \mathrm{mA}(5 \Omega)$ and $\mathrm{V}(47 \mathrm{k} \Omega)$.
Variation: Humidity Error $<0.01 \%$ of span per ${ }^{\circ} \mathrm{C}$ change in ambient temperature.
Influence: Process Supply voltage influence negligible within supply limits.
Display: Process Negligible if non-condensing.
Variable Input Offset: Displays up to 5% over and 5% under span limits.
Sensor Break
Detection:
Reading adjustable \pm Controller Span. + ve values added to Process Variable, -ve values subtracted from Process Variable
Thermocouple \& RTD - Control goes to pre-set power value. High \& Sensor Break alarms activate.
Isolation: Linear (4 to $20 \mathrm{~mA}, 2$ to 10 V \& 1 to 5 V only) - Control goes to pre-set power value. Low \& Sensor
Supported Break alarms activate.
Thermocouple Types \& Reinforced safety isolation from outputs and other inputs

Ranges:	Type	Range ${ }^{\circ} \mathrm{C}$	Range ${ }^{\text {F }}$	
	B	+100 to $1824{ }^{\circ} \mathrm{C}$	+211 to 3315F	
	C	0 to $2320{ }^{\circ}$	32 to 4208F	
	D	0 to $2315{ }^{\circ} \mathrm{C}$	32 to 4199F	
	E	-240 to $1000{ }^{\circ} \mathrm{C}$	-400 to 1832F	
	J	-200 to $1200{ }^{\circ} \mathrm{C}$	-328 to 2192F	*
	K	-240 to $1373{ }^{\circ} \mathrm{C}$	-400 to 2503F	*
	L	0 to $762^{\circ} \mathrm{C}$	32 to 1402F	*
	N	0 to $1399{ }^{\circ} \mathrm{C}$	32 to 2551F	*
	PtRh 20\%:40\%	0 to $1850{ }^{\circ} \mathrm{C}$	32 to 3362F	
	R	0 to $1759^{\circ} \mathrm{C}$	32 to 3198F	
	S	0 to $1762^{\circ} \mathrm{C}$	32 to 3204F	
Thermocouple	T	-240 to $400{ }^{\circ} \mathrm{C}$	-400 to 752F	*
Calibration:	Optional decimal place can be displayed on all ranges			

$\pm 0.1 \%$ of full range, ± 1 LSD ($\pm 1^{\circ} \mathrm{C}$ for internal CJC if enabled).
Linearization better than $\pm 0.2^{\circ} \mathrm{C}(\pm 0.05$ typical) on ranges marked * in the table above. Linearization
Supported RTD Types
for other ranges is better than $\pm 0.5^{\circ} \mathrm{C}$.
\& Ranges:
BS4937, NBS125 \& IEC584

Type	Range ${ }^{\circ} \mathrm{C}$	Range ${ }^{\circ}$ F
3-Wire PT100	-199 to $800^{\circ} \mathrm{C}$	-328 to 1472 F
NI120	-80 to $240^{\circ} \mathrm{C}$	-112 to $464^{\circ} \mathrm{F}$
Optional decimal place can be displayed on all ranges		

RTD Excitation: Linearization better than $\pm 0.2^{\circ} \mathrm{C}$ (± 0.05 typical). PT100
Lead Resistance: input to BS1904 \& DIN43760 (0.00385 $/ \Omega^{\prime} /{ }^{\circ}$ C).
Supported Linear TypesSensor current $150 \square \mathrm{~A} \pm 10 \%$.
\& Ranges:
$<0.5 \%$ of span error for max 50Ω per lead, balanced.

Type	Range	Offset Range
mA DC	0 to 20 mA DC	4 to 20mA DC
mV DC	0 to 50 mV DC	10 to 50 mV DC
V DC	0 to 5V DC	1 to 5V DC
V DC	0 to 10V DC	2 to 10V DC
Potentiometer	≥ 100 ohms	N/A
Scalable from -2000 to 100000. Decimal point selectable from0 to 3 places, but rounds to 2 places above 99.999; 1 place above 999.99 and no decimal above 9999.9.		

DC Input Multi-Point Linearization:
$\pm 0.1 \%$ of full range, ± 1 LSD.
Up to 15 scaling values can be defined anywhere between 0.1 and 100% of input.

Function	Input 1	Input 2
Process Control	Loop 1	Loop 2
Cascade Control	Slave Loop	Master Loop
Ratio Control	Controlled Variable	Un-controlled Variable
Remote Setpoint (RSP)	-	RSP on loop 1
Valve Position Feedback	-	Valve on loop 1
RSP Linear inputs only, setpoint limit settings	scalable between -9999 to 10000, but actual setpoint value is kept within the	

\#AUXILIARY INPUT A

Supported Input Types	Type	Range	Offset Range
\& Ranges:	MA DC	0 to 20mA DC	4 to 20mA DC
	0 to 5V DC	1 to 5 V DC	
	V DC	0 to 10V DC	2 to 10V DC

Accuracy: $\quad \pm 0.25 \%$ of input range ± 1 LSD.
Sampling Rate: 4 per second.
Resolution: Impedance: 16 bits.
Sensor Break $\quad>10 \mathrm{M} \Omega$ resistive, except $\mathrm{DC} \mathrm{mA}(10 \Omega)$ and $V(47 \mathrm{k} \Omega)$.
Detection: $\quad 4$ to $20 \mathrm{~mA}, 2$ to 10 V and 1 to 5 V ranges only. Control goes to pre-set power value if Aux Input is the
Isolation: active setpoint source.
Reinforced safety isolation from outputs and inputs.
Remote Setpoint (RSP) input, Scalable between ± 0.001 \& ± 10000, but always constrained by the setpoint limit settings.

DIGITAL INPUTS A \& C
Selectable Digital Input Functions:

Function	Logic High*	Logic Low*
Loop 1 Control Select	Enabled	Disabled
Loop 2 Control Select	Enabled	Disabled
Loop 1 Auto/Manual Select	Automatic	Manual
Loop 2 Auto/Manual Select	Automatic	Manual
Loop 1 Setpoint Select	Main SP	Alternate SP
Loop 2 Setpoint Select	Main SP	Alternate SP
Loop 1 Pre-Tune Select	Stop	Run
Loop 2 Pre-Tune Select	Stop	Run
Loop 1 Self-Tune Select	Stop	Run
Loop 2 Self-Tune Select	Stop	Run
Profile Run/Hold	Hold	Run
Profile Hold Segment Release	Release	No Action
Profile Abort	Abort	No Action
Data Recorder Trigger	Not Active	Active
Output n Forcing Open/Close	Open	Closed
Clear All Latched Outputs	No Action	Reset
Output n Clear Latch	No Action	Reset
Key n Mimic (for L D U R)	No Action	Key Pressed
nputs C1-C7 can be used as Binary or BCD Profile Selection	Binary 0	Binary 1

Digital Input Sensitivity: Inputs work in parallel with equivalent menus, either can change function status. Response <0.25 second.
= Level Sensitive: High or low sets status.
= Edge Sensitive: High-Low or Low-High transition changes function. Pre-Tune always off at power on (except auto pre-tune), but others retain their power off status at power on.

Std. Logic State: Volt-free (or TTL): Inverted Logic:

Number Available Isolation:

Open contacts ($>5000 \Omega$) or 2 to 24 VDC signal $=$ Logic High
Closed contacts ($<50 \Omega$) or -0.6 to +0.8 VDC signal $=$ Logic Low .
Open contact $(>5000 \Omega$) or 2 to 24 VDC signal $=$ Logic Low
Closed contact (<50) or -0.6 to +0.8 VDC signal $=$ Logic High .
0 to 9 . One from Module Slot A, 8 from Multi-Digital Input C
Reinforced safety isolation from inputs and outputs.

DCP551 Digital Control Programmer

Specification and Model Selection Guide

Introduction

The DCP551 is a high-function programmer/controller supporting up to 99 program patterns to which thermocouple, resistance temperature detector (RTD), DC voltage, DC current and other signals can be input.
The DCP551 supports: 16 event outputs, 16 external switch inputs and a wide range of other functions as part of the standard specification; and communications and auxiliary output as option functions.

- Accuracy of $\pm 0.1 \%$ FS. Easy-to-view large display characters. Compact design
- 2 PV input type also available
- Any input type can be selected by console key operation. Easy operation aided by guidance messages
- Up to 99 program patterns can be stored and up to 99 segments can be programmed to each pattern.
- Various events can be selected and set for the 16 event outputs, and code events comprising a combination of two or more points can be set.
- 16 external switch inputs allow the control of remote selection of program Nos. or operation.
- CE marking-compatible Applicable standards: EN61010-1

BASIC FUNCTION BLOCKS of DCP551

Specifications

| Number of programs | 99 |
| :--- | :--- | :--- |
| Number of segments | 99 per program, 2000 per controller |
| Segment setting
 system | RAMP-X: Set by set points (SP) and time.
 RAMP-T: Set by set points (SP) and ramp (\mathcal{C} |

$\begin{aligned} & \text { n } \\ & \stackrel{\text { n }}{2} \\ & \underline{c} \end{aligned}$	Scaling	-19999 to +20000 U (possible in case of linear input only. Inverse scaling possible. Decimal point position settable at any point)
	Square root extraction	Possible. Dropout: 0.2 to 10.0\% in case of DC current or DC voltage range
	PV equalizer (linearization table approximation)	PV1: 9 segments (10 points set) PV2: 19 segments (20 points set)
	Input bias	-1000 to +1000 U variable
	Digital filter	0.0 to 120.0 seconds variable (0.0: filter OFF)
	Number of Inputs	16
	Types of connectable outputs	Dry contacts (relay contact) and open-collector (current sink to ground)
	Terminal voltage (open)	$8.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ between common terminals (terminals 12,40) and each input terminal (under operating conditions)
	Terminal current (short-circuit)	Approx. 6 mA between each terminal (under operating conditions)
	Allowable contact resistance (dry contact)	ON: 250Ω max. (under operating conditions) OFF: $100 \mathrm{k} \Omega \mathrm{min}$. (under operating conditions)
	Voltage drop (at open-collector ON)	2 V max. (under operating conditions)
	Leakage current (at open-collector OFF)	0.1 mA max. (under operating conditions)
	Assignments (fixed)	RUN, HOLD, RESET, ADV, program No.
	Assignments (variable)	RAMP-E, FAST, AT, AUTO/MANUAL, G.Soak cancel, direct/reverse action, auto-load, PV1/2 switching
	Input sampling cycle	0.1 seconds
	ON detection min. hold time	0.2 seconds (0.4 seconds for program No.)
Indication/Programmer	Upper display	Green 5-digit, 7-segment LED This displays PV values in the basic display state. Item codes are displayed in the parameter setup.
	Lower display	Orange 5-digit, 7-segment LED This displays SP and output \% in the basic display state. Setting values are displayed in the parameter setup.
	Program No. display	Green 2-digit, 7-segment LED This displays program No. in the basic display state.
	Segment No. display	Green 2-digit, 7-segment LED This displays segment No. in the basic display state. Item Nos. are displayed in parameter setup, and alarm No. is displayed when alarm occurs.
	Message display	This displays output graph, deviation graph, event state and tags in the basic display state. This displays reference messages in the parameter setup and program setup. This displays operation details and operation results of memory card operation.
	Profile display	7 orange LEDs Displays program pattern rise, soak and fall trends.
	Status displays	22 round LEDs Modes: RUN, HLD, MAN, PRG (green) Display details: PV, SP, OUT, TM, CYC, SYN, DEV (green) Battery voltage: BAT (red) (blinks at low voltage) Status: AT (green) Events: EG1, EG2 (red)
	Operation keys	16 rubber keys
	Loader connector port	1 (dedicated cable with stereo miniplugs)

$\begin{aligned} & \text { \& } \\ & \frac{8}{8} \\ & \Sigma \mathbf{D} \end{aligned}$	Program operation modes	READY: Ready to run program (control stop/program No. selectable) RUN: Program run HOLD: Program hold FAST: Program fast-forward END: Program end READY FAST: Ready to run and fast-forward program	
		AUTO: Automatic operation MANUAL: Manual operation (output can be controlled on console)	
	Constant-value operation modes	Ready to run program (control stop) Program run	
		AUTO: Automatic operation MANUAL: Manual operation (output can be controlled on console)	
	PID controls	Proportional band (P)	0.0 to 1000.0\% (0.0: ON-OFF control)
		Reset time (1)	50 to 3600 seconds. 0 seconds: PD control
		Rate time (D)	0 to 1200 seconds. 0 seconds: PI control
		MV limit	$\begin{array}{ll}\text { Lower limit: } & -5.0 \text { to upper limit \% } \\ \text { Upper limit: } & \text { Lower limit to }+105.0 \%\end{array}$
		Manual reset	0.0 to 100.0\%
	PID controls	Number of PID sets	16 sets for program operation (9 segment unique sets+ 7 sets for automatic zone selection)
		PID set selection	Segment designation/automatic zone selection can be switched by program operation.
		MV change	0.1 to 110.0\%/0.1 seconds
		Auto-tuning	Automatic setting of PID value by limit cycle system
		ON-OFF control differential	0 to 1000 U
	Direct/reverse actionswitching	Possible	
	Programmer function	Switching	MV output switchable to SP output
		Scaling	ossible
		Output resolution	1/1 0000
$\begin{aligned} & \frac{0}{3} \\ & \frac{2}{1} \\ & \frac{1}{2} \end{aligned}$	Auxiliary output	Output types	PV, SP, deviation, MV, PV1, PV2
		Scaling	ossible
	Current output (5G) auxiliaryoutputs CH1, CH2	Output current: Allowable 4 to 20 mA dc load resistance: Output 600Ω max. (under operating conditions) accuracy: Output $\pm 0.1 \% \mathrm{FS}$ max. (under standard conditions) resolution: $1 / 10000$ Max. output current 21.6 mA dc Min. output current Output 2.4 mA dc updating cycle: Open 0.1 seconds terminal voltage: 25 V max.	
	Voltage output (6D)	Allowable load resistance: Load current adjustment: Variable open terminal voltage: OFF leakage current Output response time:	600Ω max. (under operating conditions) 2 to 22 mA variable 25 V max. $100 \mu \mathrm{~A}$ max. At ON-OFF 600Ω load: 0.5 ms max. At OFF-ON 600Ω load: 0.5 ms max. 1/1000 1 to 240 seconds variable
	Open-collector output (8D)	External supply voltage: Max. load current: OFF leakage current ON residual voltage: Output resolution: Timeproportional cycle:	12 to 24 V dc $100 \mathrm{~mA} / \mathrm{load}$ 0.1 mA max. 2 V max. 1/1000 1 to 240 seconds variable
	Open-collector output	External supply voltage: Max. load current: Max. common current: OFF leakage current: ON residual voltage:	12 to 24 V dc $70 \mathrm{~mA} / \mathrm{load}$ 500 mA 0.1 mA max. 2 V max.

Event outputs	Event types	PV type	PV, deviation, w/ deviation standby, absolute value deviation, w/absolute value deviation standby, PV rate-of-change, SP, MV, G.Soak absolute value deviation w/ G.Soak absolute value deviation standby, PV1 constant operation, PV2 constant operation, difference between PV1-PV2 at channel switching, difference between PV1-PV2
		Time type	Time events, RAMP-E time monitor, segment time, program time
		Code type	Code event, code event w/ timer, program No. binary code, segment No. binary code, program No. BCD code, segment No. BCD code
		Mode type	Unique segment, RUN+ HOLD+ END+ FAST, HOLD, READY+READY FAST, END, G.Soak standby, MANUAL, AT executing, FAST+READY FAST, console operation in progress, RUN, advance, all alarms, PV range alarm, controller alarm, PV1 currently selected, PV2 currently selected, low battery voltage
	Event Hysteresis	In case of PV type set, 0 to 1000 U	
	Event ON delay	0.0 to 3000.0 can be set to four events	
	RS-485	Network	Multidrop This controller is provided with only slave instrument functionality. 1 to 16 units max. (DIM) 1 to 31 units max. (CMA, SCM)
		Data fiow	Half duplex
		Synchronization	tart-stop synchronization
		Transmission system	Balanced (differential)
		Data line	Bit serial
		Signal line	5 transmit/receive lines (3-wire connection also possible)
	RS-485	Transmission speed	1200, 2400, 4800, 9600 bps
		Transmission distance	500 m max. (total) (300 m max. for MA500 DIM connection)
		Other	Conforming to RS-485 interface specifications
		Char. bit count	11 bits/character
		Format	1 start bit, even parity, 1 stop bit; or 1 start bit, no parity, and 2 stop bits
		Data length	8 bits
		Isolation	All inputs and outputs are completely isolated except external switch inputs.
	RS-485 communications can be performed by connecting to a computer equipped with an RS-485 interface		
	RS-232C	Network	1:1 Connected, This controller is provided with only slave instrument functionality.
		Data flow	Half duplex
		Synchronization	rt-stop synchronization
		Transmission system	Unbalanced type
		Data line	Bit serial
		Signal line	3 transmit/receive lines
		Transmission speed	1200, 2400, 4800, 9600 bps
		Transmission distance	15 mmax .
		Other	Conforming to RS-232C interface specifications
		Char. bit count	11 bits/character
		Format	1 start bit, even parity, 1 stop bit; or 1 start bit, no parity, and 2 stop bits
		Data length	8 bits
		Isolation	All inputs and outputs are completely isolated except external switch inputs.

0000000000000000	Memory backup	MemoryBattery lifeBattery backed up RAM Controller power OFF: Approx. 5 years under standard conditions					
	Rated power voltage						
	Power consumption	25 VA max.					
	Power ON rush current	50A max.					
	Power ON operation	Reset time: 10 seconds max. (time until normal operation is possible under normal operating conditions.					
	Allowable transient power loss	$20 \mathrm{~ms} \mathrm{max}$. (under operating conditions)					
	Insulation resistance	Min. $50 \mathrm{M} \Omega$ across power terminal 39 or 40 and FG terminal 52 or 53 (by 500 V dc megger)					
	Dielectric strength	1500 V ac $50 / 60 \mathrm{~Hz}$ for 1 minute between power terminal and FG terminal Note) The primary side and secondary side capacities are joined inside the product. For this reason, when carrying out a withstand voltage test, disconnect the wiring of the grounded secondary side terminals (e.g. when grounding type thermocouple is used) from that terminal. If the test is carried out with the wiring as it is, this might result in malfunction.					
	Standard conditions	Ambient temperature		$23 \pm 2^{\circ} \mathrm{C}$			
		Ambient humidity		$760 \pm 5 \% \mathrm{RH}$			
		Rated power voltage		105 V ac $\pm 1 \%$			
		Power frequency		$50 \pm 1 \mathrm{~Hz}$. Or $60+/-1 \mathrm{~Hz}$			
		Vibration resistance		$0 \mathrm{~m} / \mathrm{s}^{2}$			
		Shock resistance		$0 \mathrm{~m} / \mathrm{s}^{2}$			
		Mounting angle		Reference plane (vertical) ± 3			
	Operating conditions	Ambient temperature		0 to $50^{\circ} \mathrm{C}$ (ambient temperature at the bottom side of case when gang mounted)			
		Ambient humidity range		10 to $90 \% \mathrm{RH}$ (condensation not allowed)			
		Rated power voltage		100 to 240 V ac			
		Allowable power voltage		90 to 264 V ac			
		Power frequency		$50 \pm 2 \mathrm{~Hz}$, or $60 \pm 2 \mathrm{~Hz}$			
		Vibration resistance		0 to $1.96 \mathrm{~m} / \mathrm{s}^{2}$			
		Shock resistance		0 to $9.80 \mathrm{~m} / \mathrm{s}^{2}$			
		Mounting angle		Reference plane (vertical) $\pm 10^{\circ}$			
	Transport/storage conditions	Ambient temperature range		-20 to $+70^{\circ} \mathrm{C}$			
		Ambient humidity range		10 to $95 \% \mathrm{RH}$ (condensation not allowed)			
		Vibration resistance		0 to $4.90 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz for 2 hours each in X, Y and Z directions)			
		Shock resistance		0 to $490 \mathrm{~m} / \mathrm{s}^{2}$ (3 times vertically)			
		Package drop test		Drop height: 60 cm (1 angle, 3 edges and 6 planes; free fall)			
	Terminal screw	M3.5 self-tapping screws					
	Terminal screw Tightening torque	0.78 to 0.98 Nm					
	Mask/case materials	Mask: Multilon Case: Multilon					
	Mask/case color	Mask: Dark gray (Munsell 5Y3.5/1), Case: Light gray (Munsell 2.5Y7.5/1)					
	Installation	Specially designed mounting bracket					
	Weight	1.5 kg					
	Item	Model No.	Q'ty		Item	Mode No.	Q'ty
	Unit indicating label	-	1		Soft dust-proof cover set	81446141-001	
	Mounting bracket	81446044-001	1 set (2 p				
	User's Manual	CP-UM-5005E	1		Lithium battery set	81446140-001	rox. 200 g

- Thermocouple

	Input Type		Input Range	(FS)	Accuracy (under standard conditions)	
Symbol	C	Range No.	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
K (CA)	K46	16	-200.0 to +200.0	-300.0 to +400.0	± 0.1 \% FS	
K (CA)	K09	0	0.0 to 1200.0	0 to 2400	± 0.1 \% FS	
K (CA)	K08	1	0.0 to 800.0	0 to 1600	± 0.1 \% FS	
K (CA)	K04	2	0.0 to 400.0	0 to 750	± 0.1 \% FS	
E (CRC)	E08	3	0.0 to 800.0	0 to 1800	± 0.1 \% FS	
J (IC)	J08	4	0.0 to 800.0	0.0 to 1600	$\pm 0.1 \%$ FS	
T (CC)	T44	5	-200.0 to +300.0	-300 to +700	$\pm 0.1 \%$ FS	$\pm 0.3 \%$ FS between $-200^{\circ} \mathrm{C}$ WR $-45^{\circ} \mathrm{C}$
B (PR30-6)	B18	6	0.0 to 1800.0	0 to 3300	$\pm 0.1 \%$ FS	$\pm 4.0 \%$ FS between 0 to 260° C $\pm 0.15 \%$ FS between 260 to $800^{\circ} \mathrm{C}$
R (PR13)	R16	7	0.0 to 1600.0	0 to 3100	$\pm 0.1 \%$ FS	
S (PR10)	S16	8	0.0 to 1600.0	0 to 3100	$\pm 0.1 \%$ FS	
W (WRe5-26)	W23	9	0.0 to 2300.0	0 to 4200	$\pm 0.1 \%$ FS	
W (WRe5-26)	W14	10	0.0 to 1400.0	0 to 2552	$\pm 0.1 \%$ FS	
PR40-20	D19	11	0.0 to 1900.0	0 to 3400	$\pm 0.2 \%$ FS	$\pm 0.9 \%$ FS between 0 to $300^{\circ} \mathrm{C} \pm 5 \% \mathrm{FS}$ between 300 to $800^{\circ} \mathrm{C}$
N	U13	12	0.0 to 1300.0	32 to 2372	$\pm 0.1 \%$ FS	
PLII	Y13	13	0.0 to 1300.0	32 to 2372	$\pm 0.1 \%$ FS	
Ni-Ni-Mo	Z13	14	0.0 to 1300.0	32 to 2372	$\pm 0.1 \%$ FS	
Golden iron chromel	Z06	15	0.0 to 300.0	($\mathrm{K}=\mathrm{Kelvin}$)	$\pm 0.4 \% \mathrm{FS}$	

- Resistance temperature detector (RTD)

Input Type			Input Range (FS)		Accuracy (under standard conditions)	
Symbol	Cod	Range No.	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
JIS'89Pt100 (IEC Pt100 Ω)	F50	64	-200.0 to +500.0	-300.0 to +900.0	$\pm 0.1 \%$ FS	
	F46	65	-200.0 to +200.0	-300.0 to +400.0	$\pm 0.1 \%$ FS	
	F32	66	-100 to +150.0	-150.0 to +300.0	± 0.1 \% FS	
	F36	67	-50.0 to +200.0	-50.0 to +400.0	± 0.1 \% FS	
	F33	68	-40.0 to +60.0	-40.0 to +140.0	$\pm 0.15 \%$ FS	
	F01	69	0.0 to 100.0	0.0 to 200.0	$\pm 0.15 \%$ FS	
	F03	70	0.0 to 300.0	0.0 to 500.0	$\pm 0.1 \%$ FS	
	F05	71	0.0 to 500.0	0.0 to 900.0	$\pm 0.1 \%$ FS	
JIS'89JPt100	P50	96	-200.0 to +500.0	-300.0 to +900.0	$\pm 0.1 \%$ FS	
	P46	97	-200.0 to +200.0	-300.0 to +400.0	± 0.1 \% FS	
	P32	98	-100.0 to +150.0	-150.0 to +300.0	± 0.1 \% FS	
	P36	99	-50.0 to +200.0	-50.0 to +400.0	± 0.1 \% FS	
	P33	100	-40.0 to +60.0	-40.0 to +140.0	$\pm 0.15 \%$ FS	
	P01	101	0.0 to 100.0	0.0 to 200.0	$\pm 0.15 \%$ FS	
	P03	102	0.0 to 300.0	0.0 to 500.0	± 0.1 \% FS	
	P05	103	0.0 to 500.0	0.0 to 900.0	± 0.1 \% FS	

DC Current, DC Voltage

Input Type			Input Range (FS)		Accuracy (under standard conditions)	
Symbol	Cod	Range No.				
mA (linear)	Col	48	4 to 20 mA	Programmable range -19999 to +20000 (decimal point position can be changed)	+/-0.1\%FS	
	Z51	52	2.4 to 20 mA		+/-0.1\%FS	
mV	MO1	4	0 to 10 mV		+/-0.1\%FS	
	L02	50	-10 to 10 mV		+/-0.1\%FS	
		51	0 to 100 mV		+/-.15\%FS	
mA (linear)	CO1	128	4 to 20 mA	Programmable range -19999 to +20000 (decimal point position can be changed)	+/-.15\%FS	
	Z51	124	2.4 to 20 mA		+/-0.1\%FS	
V (linear)		129	0 to 1V		+/-0.1\%FS	
		130	-1 to +1V		+/-0.1\%FS	
	Vol	131	1 to 5 V		+/-0.1\%FS	
		132	0 to 5V		+/-0.1\%FS	
		133	0 to 10V		+/-0.1\%FS	

Handling Precautions

- The unit of code Z06 is Kelvin (K).
- The PV lower limit alarm does not occur with codes F50 and P50.
- The number of digits past the decimal point for DC current and DC voltage is programmable within the range 0 to 4 .

По вопросам продаж и поддержки обращайтесь:

Алматы (7273)495-231
Ангарск (3955)60-70-56
Архангельск (8182)63-90-72
Астрахань (8512)99-46-04
Барнаул (3852)73-04-60
Белгород (4722)40-23-64
Благовещенск (4162)22-76-07
Брянск (4832)59-03-52
Владивосток (423)249-28-31
Владикавказ (8672)28-90-48
Владимир (4922)49-43-18
Волгоград (844)278-03-48
Вологда (8172)26-41-59
Воронеж (473)204-51-73
Екатеринбург (343)384-55-89
Иваново (4932)77-34-06
Ижевск (3412)26-03-58
Иркутск (395)279-98-46
Казань (843)206-01-48

Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Коломна (4966)23-41-49
Кострома (4942)77-07-48
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курган (3522)50-90-47
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-4
Нижний Новгород (831)429-08-12
Новокузнецк (3843)20-46-81
Новосибирск (383)227-86-73
Ноябрьск(3496)41-32-12

Омск (3812)21-46-40
Орел (4862)44-53-42
Оренбург (3532)37-68-04
Пенза (8412)22-31-16
Пермь (342)205-81-47
Петрозаводск (8142)55-98-37
Псков (8112)59-10-37
Ростов-на-Дону (863)308-18-15
Рязань (4912)46-61-64
Самара (846)206-03-16
Санкт-Петербург (812)309-46-40
Саранск (8342)22-96-24
Саратов (845)249-38-78
Севастополь (8692)22-31-93
Симферополь (3652)67-13-56
Смоленск (4812)29-41-54
Сочи (862)225-72-31
Ставрополь (8652)20-65-13
Сургут (3462)77-98-35

Сыктывкар (8212)25-95-17
амбов (4752)50-40-97
Тверь (4822)63-31-35
Тольятти (8482)63-91-07
Томск (3822)98-41-53
Тула (4872)33-79-87
Тюмень (3452)66-21-18
лан-Удэ (3012)59-97-51
Ульяновск (8422)24-23-59
Уфа (347)229-48-12
Хабаровск (4212)92-98-04
Чебоксары (8352)28-53-07
Челябинск (351)202-03-61
Череповец (8202)49-02-64
Чита (3022)38-34-83
Якутск (4112)23-90-97
Ярославль (4852)69-52-93

